Personal data | Research themes | Ongoing teaching | Publications |
The main research themes of the laboratory focus on the identification and validation of new biomarkers in human cancers with diagnostic, prognostic and theragnostic purposes. The research activities combine fundamental and clinical aspects. For more than 15 years, our investigations have been focused on protein biomarkers in human tissue samples, animals and in vitro models. Immunohistochemistry (IHC) plays an essential role in the validation of these biomarkers because, as opposed to other biochemical approaches, this technology enables morphological control and thus protein localization at histological and cellular levels. A close collaboration with the Laboratory of Image Synthesis and Analysis (LISA, Ecole polytechnique, U.L.B., www.lisa.ulb.ac.be) allows us to develop standardized tools for characterizing protein expression by using the multiple abilities provided by digital image analysis. From this collaboration was created the interfaculty unit, DIAPath (Digital Image Analysis in Pathology, www.ulb.ac.be/rech/inventaire/unites/ULB723.html), which is included in the Center for Microscopy and Molecular Imaging (CMMI, Biopark of Gosselies, www.cmmi.be).Our know-how in biomarkers is often requested by other university and biotech research teams. These collaborations lead us to analyse human tumours from many origins as well as pathologic tissues from other diseases, such as inflammatory diseases, graft-versus-host or diabetes.
Digital Image Analysis in Pathology
DIAPath is a transdisciplinary and interfaculty research unit (Faculties of Medicine and École polytechnique de Bruxelles) integrated into the "Center for Microscopy and Molecular Imaging" (CMMI, Biopark of Gosselies). This unit is the result of a long-standing collaboration between the Pathology Department of the Erasme Hospital and the Laboratory of Image Synthesis and Analysis (LISA, Ecole polytechnique, ULB). Thanks to this collaboration, DIAPath is developing an integrated computational pathology approach for the characterisation, validation and monitoring of histopathological biomarkers in animal and human tissues. The approach developed by DIAPath uses histological, immunohistochemistry (IHC) and chromogenic in situ hybridisation (CISH) techniques. In addition, the unit has developed Whole Slide Imaging for the objective and quantitative characterisation of biomarkers using image analysis aided by artificial intelligence. These biomarkers can be morphological in nature or concern the expression, colocalisation or co-expression of antigens (or other labelled molecules), as well as their distribution in histological samples. Data analysis skills complete the set-up. The overall objective is to extract information useful for understanding disease processes and responses to treatment, as well as to identify and validate new biomarkers useful for diagnostic, prognostic and therapeutic purposes. DIAPath is continuing to develop its skills to extend its tissue labelling, imaging and analysis techniques to fluorescence.
This person isn't currently part of a projet.