Personal data | Research themes | Ongoing teaching | Publications |
TIPs - Transport phenomena and process engineering
The objective of the research carried out at the Transfers, Interfaces and Processes (TIPs) laboratory of the Université libre de Bruxelles (ULB) is the experimental characterization and the mathematical modeling of transport phenomena within systems containing several phases (gas and/or liquid and/or solid), exchanging matter, heat or momentum, through an interface between these phases, at scales between the micron and the millimeter. The research carried out revolves around mainly fundamental and/or generic questions. They have direct applications in the fields of health, environment, heat transfer technologies and agro-food, chemical, microtechnology, materials and space industries. Our current research concerns 9 scientific topics: Drying, Enzymatic processes, Evaporation and boiling, Gas-liquid transfers, Microfluidics, Physiological fluids, Soft/Wet microrobotics, Surface rheology and, as a side research area, the characterization of Ancient hydraulic systems. The TIPs laboratory is composed of 5 professors and approximately 35 researchers. It is divided into two research units : "TIPs - Transport phenomena and process engineering" and "TIPs - Fluid physics". The TIPs laboratory collaborates with a number of scientific and industrial partners in Belgium, Europe, USA, Israel and Canada, in the frame of several networks funded by the European Commission or by the European Space Agency, and also thanks to support at National level (BELSPO, FNRS, Brussels and Walloon Regions). The team investigates mostly fundamental and/or generic questions, i.e. common to several natural or industrial processes. Studied problems most often involve notions of nonlinear dynamics, physical chemistry (equilibrium and non-equilibrium), statistical mechanics, transport phenomena, applied mathematics, ... The used tools are either theoretical (stability analyses, scaling laws, asymptotic techniques, ...), numerical (commercial or 'home-made' software), or experimental (fluid behavior visualization by interferometry, Schlieren, infrared thermography, ...). The TIPs laboratory has an experimental facility devoted to the realization, the characterization and the manipulation of systems including several phases (gas and/or liquid and/or solid), exchanging mass, energy or momentum, at a characteristic length scale between the micron and the millimeter. The lab is part of the Micro-milli platform. It is managed by Adam Chafaï, PhD.
At the TIPs (Transfers, Interfaces and Processes) Department of ULB, the main goal of the ongoing research is to develop new theoretical, numerical and experimental methods allowing to understand and predict the behavior of multiphase systems, and to design or optimize industrial processes dedicated to the transformation of matter (mineral, organic or biological) and energy. There are essentially six main research themes : mixing, gas-liquid mass transfer, dynamics of interfaces and their instabilities, wetting, porous media, heat transfer and phase change (evaporation, crystallization, ...). The Department is made of two complementary research units : the Fluid Physics Unit and the Chemical Engineering Unit. The Fluid Physics Unit collaborates with a number of scientific and industrial partners in Belgium, Europe, USA, Israel and Canada, in the frame of several networks funded by the European Commission or by the European Space Agency, and also thanks to support at National level (BELSPO, FNRS, Brussels and Walloon Regions). The team investigates mostly fundamental and/or generic questions, i.e. common to several natural or industrial processes. Studied problems most often involve notions of nonlinear dynamics, physical chemistry (equilibrium and non-equilibrium), statistical mechanics, transport phenomena, applied mathematics, ... The used tools are either theoretical (stability analyses, scaling laws, asymptotic techniques, ...), numerical (commercial or 'home-made' software), or experimental (fluid behavior visualization by interferometry, Schlieren, infrared thermography, ...).
Transport phenomena in the cardiovascular system
Regarding the transport phenomena in the cardiovascular system, our interest lies in the ballistocardiography (BCG) technique. It is a medical technique consisting in measuring, thanks to sensors, the small movements of the body induced by the blood circulation. It is used in particular on the International Space Station, to monitor the time evolution of the heart health of astronauts. Measured signals have been shown to be good indicators of the heart function. Nevertheless, quantitative links between physiological parameters of the heart and the signals measured in BCG have not yet been fully established. In this frame, in collaboration with the cardiology department of the Erasme Hospital (Dr. Pierre-François Migeotte), we develop the fundamental scientific knowledge behind BCG. For this, mathematical models of the body movements induced by the blood flow in the arteries are established, by the combination of fluid mechanics and analytical mechanics approaches. Then, these models are simulated and challenged against BCG signals obtained on Earth, under well-defined conditions, and on patients for whom certain cardiac parameters have been altered in a known manner.